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Abstract

A theory of analogy must describe how the meaning of an analogy

is derived from the meanings of its parts. In the

structure-m &]Rgi the , the interpretation rules are

characterized as implicit rules for mapping knowledge about a

base domain into a target domain. Two important features of the

theory are (1) the rules depend only on syntactic properties of

the knowledge representation, and not on the specific content of

the domains; and (2) the theoretical framework allows analogies

to be distinguished cleanly from literal similarity statements,

applications of general laws, and other kinds of comparisons.

Two mapping principles are described: (1) Relations between

objects, rather than attributes of objects, are mapped from base

to target; and (2) The particular relations mapped are determined

by systematicity, as defined by the existence of higher-order

relations.
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Structure-Mapping: A Theoretical Framework for Analogy

i When people hear an. analogy such as "An electric battery is

I like a reservoir" how do they derive its meaning? We might

suppose that they simply apply their knowledge about reservoirs

to batteries; and that the greater the match, the better the

analogy. Such a "degree of overlap" approach seems reasonably

correct for literal similarity comparisons. In Tversky's (1977)

elegant contrast model, the similarity between A and B is greater

the greater the size of the intersection (A B) of their feature

sets and the less the size of the two complement sets
2

(A - B) and (B - A). However, although the degree-of-overlap

model appears to work well for literal similarity comparisons, it

JI does not provide a good account of analogy. The strength of an

analogical match does not seem to depend on the overall degree of

W featural overlap; not all features are equally relevant to the

interpretation. Only certain kinds of mismatches count for or

against analogies. For example, we could not support the

battery-reservoir analogy by remarking (even if true) that

batteries and reservoirs both tend to be cylindrical; nor does it

F weaken the analogy to show that their shapes are different. The

r essence of the analogy between batteries and reservoirs is that

both store potential energy. release that energy to provide power

( for systems, etc. We can be quite satisfied with the analogy in

spite of the fact that the average battery differs from the

I average reservoir in size, shape. color, and substance.

2
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'I

As another example of the selectiveness of analogical

mapping, consider the simple arithmetic analogy 3:6::2:4. We do

not care how many features 3 has in common with 2. nor 6 with 4.

It is not the overall number of shared versus nonshared features

that counts here, but only the relationship "twice as great as"

that holds between 3 and 6 and also between 2 and 4. To

underscore the implicit selectiveness of the feature match. note

that we do not consider the analogy 3:6::2:4 better or more apt

than the analogy 3:6::200:400. even though by most accounts 3 has

more features in common with 2 than with 200.

A theory based on the mere relative numbers of shared and

non-shared predicates cannot provide an adequate account of

analogy, nor, therefore. a sufficient basis for a general account

of relatedness. In the structure-mapping theory, a simple but

powerful distinction is made among predicate types, that allows

us to state which ones will be mapped. The basic intuition is

that an analogy is fundamentally an assertion that a relational

structure that normally applies in one domain can be applied in

another domain. Before laying out the theory. a few

preliminaries are necessary.

Prliminary Aumptions and Pgints 2f Em hazi

1. Domains and situations are psychologically viewed as systems
3

of objects, object-attributes and relations between objects.

3 F
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2." Knowledge is reptesented here as propositional networks of

nodes and predicates (cf. Miller & Johnson-Laird, 1979;

Norman, Rumelhart, & the LNR Group, 1975; Rumelhart & Ortony.

1977; Schank & Abelson, 1977). The nodes represent concepts

treated as wholes; the predicates applied to the nodes

express propositions about the concepts.

3. Two essentially syntactic distinctions among predicate types

will be important. The first distinction is between object

attributes and relationships. This distinction can be made

explicit in the predicate structure: attributes are

predicates taking one argument, and rg.At=.an are predicates

taking two or more arguments. For example, COLLIDE (x,y) is
4

a relation, while LARGE (x) is an attribute.

The second important syntactic distinction is between first-

order predicates (taking objects as arguments) and second-

and higher-order predicates (taking propositions as

arguments). For example, if COLLIDE (x,y) and STRIKE (yz)

are first-order predicates, CAUSE [COLLIDE(x,y), STRIKE

U] (y,z)] is a second-order predicate.

4. These representations, including the distinctions between

different kinds of predicates, are intended to reflect the

way people construe a situation, rather than what is
5

logically possible.

41-1
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Stjiijxr-mapping: Interpretation Rules

The analogy "A T is (like) a B" conveys that aspects of the

hearer's knowledge about B can be applied to T. T will be called

the tAr.ot, since it is the domain being explicated. B will be

called the ba_, since it is the (presumably more familiar)

domain that serves as the source of knowledge. Suppose that the

hearer's representation of the base domain B can be stated in

terms of object nodes b , b ,...,b and predicates such as A, R.
1 2 n

R'. The hearer knows, or is told, that the target domain has
6

object nodes t , t ....,t . In order to understand the analogy,
1 2 m

the hearer must map the object nodes of B onto the object nodes

of T:

M: b -- > t

i i

Given these object correspondences, the hearer derives

inferences about T by applying predicates valid in the base

domain B, using the node substitutions dictated by the object

mapping:

M: [R(b ,b )I -- > [R(t .t )J
ij ij

7
Here R(b ,b ) is a relation that holds in the base domain B.

i j
Higher-order relations, such as R'(R . R ), can also be mapped:1 2

M: [R'(R (b , b ), R (b , b )H -- >
1 i j 2 k 1

5
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, [R'(R (t ,t 1,R (t , t )
I i j 2 k 1

Higher-order relations play an important role in analogy, as is

discussed below.

Finally, a distinguishing characteristic of analogy is that
attributes (one-place predicates) from B tend not to be mapped

into T:

~[A~b )]-4-> [A(t).
i i

Notice that this discussion has been purely structural; the

distinctions invoked rely only on the syntax of the knowledgerrepresentation, not on the content. The cntent of the relations

may be static spatial information, as in UNDER(x,y), or

FULL(CONTAINER. WATER); or constraint information, as in

PROPORTIONAL [(PRESSURE(liquid, source, goal), FLOWRATE(liquid,

source, goal)]; or dynamic causal information, as in CAUSE {AND

I [PUNCTURE (CONTAINER), FULL (CONTAINER. WATER)]1, FLOW-FROM (WATER.

CONTAINER) .

Kid f omain omparxisn

In the structure-mapping framework, the interpretation rules

for analogy can be distinguished from those for other kinds of

domain comparisons. The syntactic type of the shared versus

Fnonshared predicates determines whether a given comparison is

I 6
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thought of as analogy, as literal similarity, or as the

application of a general law.

In this section, different kinds of domain comparisons are

described, using the solar system as a common theme. The top

half of Figure 1 shows a partial representation of what might be

a person's knowledge of our solar system. (The dotted lines

should be ignored for now.) Both object-attributes, such as

YELLOW (sun), and relations between objects, such as REVOLVE

AROUND (planet, sun) are shown. (The diagram is quite sparse;

most of us know much more than is shown here.) Assuming that the

hearer has the correct object correspondences, the question is

which predicates will be mapped for each type of comparison.

(1) A literal simjlAxjty statement is a comparison in which a

large number of predicates is mapped from base to target,

relative to the number of nonmapped predicates (e.g.,

Tversky, 1977). The mapped predicates include b A object-

attributes and relational predicates.

EXAMPLE(l): The X12 star system in the Andromeda nebula is like

our solar system.

INTERPRETATION: Intended inferences include both object

characteristics--e.g., "The X12 star is YELLOW, MEDIUM-SIZED,

etc., like our sun." and relational characteristics, such as

"The X12 planets REVOLVE AROUND the X12 star, as in our system." ['
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In a literal similarity comparison, all or most of the predicates'

shown would be mapped.

(2) An analogy is a comparison in which relational predicates,

but few or no object attributes, can be mapped from base to

target.

EXAMPLE(2): The hydrogen atom is like our solar system.

(Rutherford, 1906)

INTERPRETATION: Intended inferences concern chiefly the

relational structure: e.g., "The electron REVOLVES AROUND the

nucleus, just as the planets REVOLVE AROUND the sun." but not

"The nucleus is YELLOW, MASSIVE, etc., like the sun." The bottom

half of Figure 1 shows these mapped relations. If higher-order

relations are present in the base. they can be mapped as

well: e.g., The hearer might map "The fact that the nucleus

ATTRACTS the electron CA the electron to REVOLVE around the

nucleus." from "The fact that the sun ATTRACTS the planets CAUlS

the planets to REVOLVE AROUND the sun." (This relation is not

shown in Figure 1.)

(3) A genleral 1 is a comparison in which the base domain is an

r abstract relational structure. Such a structure would

resemble Figure 1, except that the object nodes would be

generalized physical entities, rather than particular objects

like "sun" and "planet". Predicates from the abstract base

domain are mapped into the target domain; there are no

nonmapped predicates.

loom

I 8
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planet, M -- electron i

M
planet1 - - - -- -- P electroni

ATTRACTS ATTRACTS MORE MASSIVE REVOLVES HOTTER

, M

sun - M ....... - nucleus

attributes

YELLOW HTMASSIVE

Figure 1. Structure-mapping for the Rutherford analogy: *The

atom is like the solar system." Ul
9 1 tit
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EXAMPLE(3): The hydrogen atom is a central force system.

INTERPRETATION: Intended inferences include 'The nucleus

ATTRACTS the electron."; "The electron REVOLVES AROUND the

nucleus." These are mapped from base propositions such as "The

central object ATTRACTS the peripheral object.n; or *The less

massive object REVOLVES AROUND the more massive object." These

intended inferences resemble those for the analogy (Example 2).

The difference is that in the analogy there are other base

predicates that are not mapped, such as "The sun is YELLOW."

All three kinds of comparison involve substantial overlap in

relations, but, except for literal similarity, not in object

attributes. What happens if there is strong overlap in objects

but not in relations? Let us leave aside single-component

matches involving only one object out of many, and instead

consider comparisons in which all the objects are shared, but

relations between objects are not. The commonest case in which

this arises is chronology:

(4) A chronology is a comparison between two time-states of the

same domain. The objects at time 1 map onto the objects at j
time 2. This is the only interesting case in which there are

shared objects but no shared relations. The two time-states

share object-attributes, but typically not relational

predicates.

[ 10
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EXAMPLE(4): Two hydrogen atoms and an oxygen atom will combine

to form a water molecule.

INTERPRETATION: Although the same objects--two hydrogen atoms

and an oxygen atom--are present in both situations, neither

configurational relations nor dynamic relations of the initial

situation can be mapped into the final situation. Only the

independent qualities of the individual atoms (e.g., their atomic

weights) are preserved. Note that such overlap among component

objects is not sufficient to produce similarity between

systems: Two isolated hydrogen atoms and an oxygen atom do not

rmble water, either literally or analogically. Chronology

will not concern us further; it is included for completeness, as

the limiting case of object overlap with no necessary relational

overlap.

Table 1 summarizes these distinctions. Overlap in relations

is necessary for any strong perception of similarity between two

domains. Overlap in bq-th object attributes and inter-object

relationships is seen as literal similarity, and overlap in

relationships but not objects is seen as analogical relatedness.

Overlap in objets but not relationships may be seen as

chronology, but not as similarity. Finally, a comparison with

neither attribute overlap nor relational overlap is simply an

anomaly.

11 B
: J ______
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Table 1

Kinds of Predicates Mapped in Different

Types of Domain Comparison

No. of No. of
attributes relations
mapped to mapped to
target target Example

Literal Similarity Many Many The K5 solar system

is like our solar

*system.

Analogy Few Many The atom is like

our solar system.

Abstraction Fewa Many The atom is a

TI central force

* system.Ii
Anomaly Few Few Coffee is like the

solar system

S[ a Abstraction differs from analogy and the other comparisons
in having few object-attributes in the base domain as well[ .. as few object-attributes in the target domain.

12
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*According to this analysis, the contrast between analogy and

literal similarity is a continuum, not a dichotomy. Given that

two domains overlap in relationships, they are more literally

similar to the extent that their object-attributes also overlap.

A different sort of continuum applies between analogies and

general laws: In both cases, a relational structure is mapped

from base to target. If the base representation includes

concrete objects whose individual attributes must be left behind

in the mapping, the comparison is an analogy. As the object

nodes of the base domain become more abstract and variable-like,

the comparison is seen as a general law.

Metaphor

A number of different kinds of comparisons go under the term

"metaphor." Many (perhaps most) metaphors are predominantly

relational comparisons, and are thus essentially analogies. For

example, in A. E. Housman's comparison, "I could no more define

poetry than a terrier can define a rat.", the object

correspondences are terrier--poet and rat--poetry. Clearly, the

intended inference is not that the poet is like a terrier, nor

certainly that poetry is like a rat, but rather. that the

relation between poet and poetry is like the relation between

terrier and rat. Again, in Virginia Woolf's simile, "She allowed [
life to waste like a tap left running." the intent seems to be

to convey the relational notion of a person wasting a resource

13
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through neglect, rather than to convey that her life was like

running water.

However, not all metaphors are relationally focused; some

are predominantly attribute matches. These generally involve

shared attributes that are few but striking, and often more

salient in the base than in the target (Ortony, 1979): e.g.,

"She's a giraffe," used to convey that she is tall. Many such

metaphors involve conventional vehicles, such as "giraffe" above.

or conventional dimensional matches, such as "a deep/shallow

idea" (Glucksberg, Gildea & Bookin, 1982; Lakoff & Johnson,

1980). Moreover, metaphors can be mixtures of all of these.

Finally, for metaphors that are analyzable as analogies or

combinations of analogies, the mapping rules tend to be less

regular (Gentner, 1982,a).

Hi he-order pr d ca e a1 systematicit

Relations have priority over object-attributes in analogical

matching. However, not all relations are equally likely to be

preserved in analogy. For example, in the Rutherford analogy

between solar system and atom, the relation MORE MASSIVE THAN

* F (sun, planet) is mapped across to the atom, but the formally

similar relation HOTTER THAN (sun, planet) is not. The goal of

I this section is to characterize this analogical relevance

explicitly.

F 14
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'Part of our understafiding about analogy is that it conveys a

system of connected knowledge, not a mere assortment of

independent facts. Such a system can be represented by an

interconnected predicate structure in which higher-order
8

predicates enforce connections among lower-order predicates. To

reflect this tacit preference for coherence in analogy, I propose

the jtjgly prnciple: A predicate that belongs to a

mappable system of mutually interconnecting relationships is more

likely to be imported into the target than is an isolated

predicate.

In the Rutherford model, the set of predicates that forms a

mappable system includes the following lower-order relations:

(1) DISTANCE (sun, planet),

(2) ATTRACTIVE FORCE (sun, planet)

(3) REVOLVES AROUND (planet, sun), and

(4) MORE MASSIVE THAN (sun, planet).

One symptom of this systematicity is that changing one of

these relations affects the others. For example, suppose we

decrease the attraction between sun and planet; then the distance

between them will increase, all else being equal. Thus relations [
(1) and (2) are interrelated. Again, suppose we reverse relation

(4), to state that the planet is more massive than the sun; then

15
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I
we must also reverse relation (3), for the sun would then revolve

9
around the planet. One way of expressing these dependencies

among the lower-order relations is as a set of simultaneous

constraint equations:

F m ___ a m ma
gray 2 p p sas

R

where F is the gravitational force. m is the mass of
gray p

the planet, a is the radial acceleration of the planet (and
p

similarly m and a for the sun), R is the distance between
S S

planet and sun, and G is the gravitational constant.

The same interdependencies hold for the atom, if we make the

appropriate node substitutions:

(5) DISTANCE (nucleus, electron),

(6) ATTRACTIVE FORCE (nucleus, electron)

(7) REVOLVES AROUND (electron, nucleus), and

(8) MORE MASSIVE THAN (nucleus, electron).I
The corrasponding equations for the atom are

1

| 16
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Sqq

en
F = = ma = ma
elec 2 e e n n

R

where F is the electromagnetic force. q is the charge
elec e

on the electron, m is the mass of the electron, a is the radial
e e

acceleration of the electron, R is the distance between electron
e

and nucleus, (and similarly for the nucleus), and -1 is the

electromagnetic constant.

These equations embody higher-order relations that connect

the lower-order relations (1) through (4) into a mutually

consi-raining structure. By the systematicity principle, to the

extent that people recognize (however vaguely) that the system of

predicates connected with central forces is the deepest, most

interconnected mappable system for this analogy, they will favor

relations that belong to that system in their interpretations.

This is why MORE MASSIVE THAN is preserved while HOTTER THAN is

not: Only MORE MASSIVE THAN participates in the central-force

system of predicates.

As a final demonstration of the operation of the

systematicity principle, consider the analogy "Heat is like T

water," used to explain heat transfer from a warm house in cold

weather. Suppose the hearer's knowledge about water includes two

scenarios:

1. AND[CONTAIN(vessel, water), ON-TOP-OF(lid, vessel)]

17
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2. CAUSE {AND (PUNCTURE(vessel), CONTAIN(vessel. water)], FLOW-

FROM (water, vessel)}.

These can be paraphrased roughly as follows: (1) The vessel

contains water and has a lid; (2) if a vessel that contains water

is punctured, water will flow out. Assuming that the hearer has

made the obvious object correspondences (water -- > heat,

vessel --> house and lid -- > roof), which scenario will be

mapped?

Intuitively, the second scenario is more interesting than

the first: (1) conveys merely a static spatial description,

while (2) conveys a dynamic causal description. We would like

chain (2) to be favored over chain (1), so that dynamic causal

knowledge is likely to be present in the candidate set of

attempted predications (to use Ortony's (1979) term). We could

accomplish this by postulating that analogies select for dynamic

causal knowledge, or more generally, for appropriate

abstractions. Either of these would be a mistake: The former

course limits the scope of analogy unreasonably, and the latter

course is both vague, in that "appropriateness" is difficult to

define explicitly, and incorrect, in that analogies can also
12

convey inappropriate abstractions. We want our rules for

analogical interpretation to choose chain (2) over chain (1), but

we want them to operate, at least initially, without appeal to

specific content or appropriateness. The systematicity principle

offers a way to satisfy both requirements. Dynamic causal

18&
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information [e.g., (2)] will usually be repiesented in a more

deeply embedded structure than simple stative information [e.g.,

(1)]. Thus, by promoting deeply nested relational chains, the

systematicity principle operates to promote predicates that

participate in causal chains and in other constraint relations.

It is a purely syntactic mechanism that guarantees that the set

of candidate mappings will be as interesting--in the sense that a

mutually interconnected system of predicates is interesting--as

the knowledge base allows.

In the next section, empirical support for the structure-

mapping theory is briefly discussed. First, however, let us

review the performance of the theory against a set of a priori

theoretical criteria. The structure-mapping theory satisfies the

first requirement of a theory of analogy, that it describe the

rules by which the interpretation of an analogy is derived from

the meanings of its parts. Further, the rules are such as to

distinguish analogy from other kinds of domain comparisons, such

as abstraction or literal similarity. Finally, a third feature

of the structure-mapping theory is that the interpretation rules

are characterizable purely syntactically. That is, the

processing mechanism that selects the initial candidate set of

predicates to map attends only to the ztlru e of the knowledge

representations for the two analogs, and not to the content.

I1
19 [.
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7

Empiia suapgrt

There is research supporting the structure-mapping approach.

In one set of studies, subjects wrote out interpretations of

analogical comparisons such as "A cigarette is like a time bomb."

These interpretations were read to naive judges, who rated each

assertion as to whether it was an attribute or a relation. (For

a fuller description, see Gentner, 1980b). The results indicated

a strong focus on relational information in interpreting

analogies. Relational information predominates over

attributional information in analogy interpretations, but not in

object descriptions generated by the same subjects. Further, a

correlation of aptness ratings and relationality ratings revealed

that subjects liked the analogies best for which they wrote the

greatest degree of relational information.

Other experimental evidence for structure-mapping as part of

the psychological process of interpreting complex analogies has

included developmental studies (Gentner, 1977a,b; 1980b) and

studies of how people use analogies in learning science (Collins

& Gentner, in preparation; Gentner, 1980a, 1981; Gentner &

Gentner, 1982).

Related rsac

Complex explanatory analogies have until recently received

little attention in psychology, perhaps because such analogies

[ 20
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require fairly elaborate representations of meaning. Studies of

analogy in scientific learning and in reasoning have emphasized

the importance of shared complex representational structures

(Clement, 1981. 1982; Collins & Gentner, in preparation; Gentner,

1980; Gentner & Gentner, 1982; Hesse, 1966; Hobbs, 1979; Hoffman,

1980; Moore & Newell, 1973; Oppenheimer. 1955; Polya, 1973;

Riley, 1981; Rumelhart & Norman, 1981; Steels, 1981; Stevens,

Collins & Goldin, 1979; VanLehn & Brown, 1980). Although some of

this work has been empirically tested, most of it remains in the

area of interesting but unvalidated theory. In contrast, much of

the psychological experimentation on analogy and metaphor has

been either theory-neutral (e.g. Schustack & Anderson, 1979;

Verbrugge & McCarrell, 1977) or based on rather simple

representations of meaning: e.g., feature-list representations

(e.g., Ortony, 1979) or multidimensional space representations

(e.g., Rumelhart & Abrahamson, 1973; Tourangeau & Sternberg,

1981). These kinds of representations can deal well with object

attributes, but are extremely limited in their ability to express

relations between objects, and especially higher-order relations.

Recent work in cognitive science has begun to explore more

powerful representational schemes. The Merlin system (Moore &

Newell, 1973) featured a mechanism for "viewing x as y" (see also

Steels, 1982) which involved explicit comparisons of the shared

and nonshared predicates of two situations. Winston (1980,

1981), using a propositional representation system. has simulated
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the process of matching a current situation with a previously

stored precedent and using the similarity match to justify

importing inferences from the precedent to the current situation.

Further, in recent work he has investigated importance-dominated

matching; here the match between old and new situations is

performed by counting only those predicates that occur in causal

chains. This requirement is somewhat more restrictive than the

structure-mapping principle that participation in any higher-

order chain results in preferential mapping. However. it has the

similar effect of focussing the matcher on systematic relational

structures rather than on haphazard resemblances between

situations. One valuable aspect of Winston's work is his

modelling of the process of abstracting general rules from the

analogical matches. Gick and Holyoak have also emphasized the

relationship between analogical matching and the formation of

general schemas in an interesting series of studies of transfer

in problem-solving (Gick and Holyoak, 1980. in press; Holyoak, in

press).

Other researchers have explored specific instances of

relational mapping. VanLehn & Brown (1980) have analyzed

* analogical learning of procedural rules in arithmetic,

postulating mapping rules compatible with the rules proposed

here. Clement (1981. 1982) has proposed a four-stage serics of

processes of generating analogical comparisons during problem-

solving. Rumelhart & Norman (1981) have used a schema-based
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representational system to discuss analogical transfer.

Carbonell (1981) has characterized the comprehension of analogy;

his approach emphasizes common goals and subgoals as organizing

principles. In the main, these accounts are compatible with that

given by the structure-mapping theory in each of the problem

domains. Relations tend to be preserved across domains with

dissimilar object-attributes: e.g., the matching of like

procedures that apply to unlike sets of objects (VanLehn and

Brown, 1980).

Th~e Anlgia Shift Conjecturle

Some of the distinctions made here may appear rather

academic. To illustrate their potential relevance, let us apply

these distinctions to the spontaneous comparisons ttat peixe

make in the course of learning a domain. An informal observation

is that the earliest comparisons are chiefly literal-similarity

matches, followed by analogies, followed by general laws. For

example, Ken Forbus and I have observed a subject trying to

understand the behavior of water flowing through a constricted

pipe. His first comparisons were similarity matches, e.g., water

coming through a constricted hose. Later, he produced analogies

such as a train speeding up or slowing down, and balls banging

into the walls and transferring momentum. Finally, he arrived at

a general statement of the Bernoulli principle, that velocity

increases and pressure decreases in a constriction.

* 23 F
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I
This sequence can be understood in terms of the kinds of

i differences in predicate overlap discussed in this paper. In the

structure-mapping framework, we can suggest reasons that the

accessibility and the explanatory usefulness of a match may be

negatively related. Literal similarity matches are highly

accessible, since they can be indexed by object descriptions, by

* relational structures, or by both. But they are not very useful

in deriving causal principles, precisely because there is too

much overlap to know what is crucial. Potential analogies are

less likely to be noticed, since they require accessing the data

base via relational matches; object matches are of no use.

However, once found, an analogy should be more iseful in deriving

the key principles, since the shared data structure is sparse

enough to permit analysis. Moreover, if we assume the

systematicity principle, then the set of overlapping predicates

is likely to include higher-order relations such as CAUSE and

IMPLIES. To state a general law requires another step beyond

creating a temporary correspondence between unlike domains: the

person must create a new relational structure whose objects are4' so lacking in specific attributes that the structure can be

applied across widely different domains. (See Gick & Holyoak,

1980, in press). One speculation is that such general laws can

be discovered by comparing two or more analogies, so that the

common subparts of the relational structure can be isolated.
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The &-mappin theory describes the implicit

interpretation rules of analogy. The central claims of the

theory are that analogy is characterized by the mapping of

relations between objects, rather than attributes of objects from

base to target; and, further, that the particular relations

mapped are those that are dominated by higher-order relations

that belong to the mapping (the sy_$_=atii y claim). These

rules have the desirable property that they depend onll on

syntactic properties of the knowledge representation, and not on

the specific content of the domain. Further, this theoretical

framework allows us to state the differences between analogies

and literal similarity statements, abstractions and other kinds

of comparisons.

One implication of the theory is that no treatment of domain

relatedness can be complete without distinguishing between object

features and relational features: that is, between relational

predicates and one-place attributive predicates. Careful

analysis of the predicate structure is central to modelling the

inferences people make in different kinds of comparisons.

2.
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research on which this paper is based, and Cindy Hunt for

preparing the manuscript.

2
According to Tversky (1977), the negative effects of the

two complement sets are not equal: for example, if we are asked

"How similar is A to B?", the set (B - A)--features of B not

shared by A--counts much more than the set (A - B).

3
* These "objects" may be clear entities (e.g. "rabbit"),

component warts of a larger object (e.g. "rabbit's ear") or even

coherent combinations of smaller units (e.g."herd of rabbits");

the important point is that they function as wholes at a given

Flevel of organization.
4One clarification is important here. Many attributive
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predicates implicitly invoke comparisons between the value of

their object and some standard value on the dimension. LARGE (x)

implicitly means "X is large for its class." For example, a

large star is of a different size than a large mouse. But if

LARGE (x) is implicitly interpreted as LARGER THAN (X, prototype-

x), then this suggests that many surface attributes are

implicitly two-place predicates. Does this invalidate the

attribute-relation distinction? I will argue that it does

not: that only relations that apply within the domain of

discourse are psychologically stored and processed as true

relations. Thus, a relation such as LARGER THAN (sun, planet),

that applies between two objects in the base (or target) domain,

is processed as a relation; whereas an implicit attributive

comparison, such as LARGER THAN (sun, prototype- star), is

processed as an attribute.

5
Logically, a relation R(a,b,c,) can perfectly well be

represented as Q(x), where Q(x) is true just in case R(a,b,c) is

true. Psychologically, the representation must be chosen to

model the way people think.

6

Most explanatory analogies are 1-1 mappings, in which m -

n. However, there are exceptions (Gentner, 1982,a).
7 i
The assumption that predicates are brought across as

identica matches is crucial to the clarity of this discussion.

The position that predicates need only be similar between the
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base and the domain (e.g., Hesse, 1966; Ortony, 1979) leads to a

problem of infinite regress, with similarity of surface concepts

defined in terms of similarity of components, etc,. I will

assume instead that similarity can be restated as identity among

some number of component predicates.

8
The order of a relation is determined by the order of its

arguments. A first-order relation takes objects as its

arguments. A second-order relation has at least one first-order

relation among its arguments; and in general an nth order

relation has at least one (n-l)th order argument.

9
This follows from the simultaneous equations below. The

radial acceleration of either object is given by the force

*1 divided by its own mass; thus the lighter object has the greater

radial acceleration. To maintain separation, it must also have a

tangential velocity sufficient to keep it from falling into the

larger object.

10
I make the assumption here that partial knowledge of the

system is often sufficient to allow a person to gauge its

interconnectedness. In the present example, a person may

recognize that force, mass and motion are highly interrelated

without having full knowledge of the governing equations.

In this discussion I have made the simplifying assumption

Jthat, in comprehension of analogy, the hearer starts with the

[? 34
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object correspondences and then maps across the relations. The

actual order of processing is clearly variable. If the object

assignment is left unspecified, the hearer can use knowledge

about matching relations to decide on the object correspondences.

Therefore, it is more accurate to replace the statement that the

object correspondences are decided before the relational mappings

b.egi/n with the weaker statement that the object correspondences

are decided before the relational mappings are finigbed. This is

largely because in a complex analogy, the number of mappable

relations is large compared to the number of object

correspondences; indeed the number of mappable relations may have

no clear upper bound.

12
Unless we distinguish the structural rules for generating

the candidate set from other conceptual criteria (such as

appropriateness, insightfulness, or correctness) that can be

applied to the candidate set, we rob analogy of its power to

convey new information. Just as we can perform a syntactic

analysis of what a sentence conveys, even when the information it

conveys is semantically novel or implausible (e.g. "Man bites

dog."), so we must be able to derive a structural analysis of an

analogy that does not depend on a priori conceptual plausibility.

Of course, our ultimate acceptance of the analogy will depend on

whether its candidate set of predicates is plausible; but this is

a separate matter.
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